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Abstract

Neural networks have recently received a great deal of attention in the field of manufacturing process quality control, where
statistical techniques have traditionally been used. In this paper, a neural-based procedure for quality monitoring is discussed from a
statistical perspective. The neural network is based on Fuzzy ART, which is exploited for recognising any unnatural change in the
state of a manufacturing process. Initially, the neural algorithm is analysed by means of geometrical arguments. Then, in order to
evaluate control performances in terms of errors of Types I and II, the effects of three tuneable parameters are examined through a
statistical model. Upper bound limits for the error rates are analytically computed, and then numerically illustrated for different
combinations of the tuneable parameters. Finally, a criterion for the neural network designing is proposed and validated in a specific
test case through simulation. The results demonstrate the effectiveness of the proposed neural-based procedure for manufacturing

quality monitoring.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Neural networks have recently received a great deal of
attention in a wide variety of applications where
statistical methods have usually been employed. As an
example, neural networks are used for classification and
regression problems because of their ability to elaborate
large amounts of data in real-time, and their capacity for
handling noisy and uncertain data. Ripley (1994)
provided a comparison study between statistical meth-
ods and neural networks for classification problems.
Stern (1996) introduced the use of neural network
models from the perspective of an applied statistician
using a regression problem as an example. There is also
an increasing emphasis on reviewing neural networks
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theory from a statistical perspective. Cheng and
Titterington (1994) have shown that some statistical
procedures can be given a neural network expression.
Hwang and Ding (1997) and De Veaux et al. (1998)
considered the problem of constructing confidence
intervals for neural networks in nonlinear regression
applications. A comprehensive reference on neural
network theory is provided by Haykin (1999), while
Bishop (1995) provided a general introduction of neural
networks for statisticians.

Since neural networks are able to recall learned
patterns from noisy or incomplete representations, they
were also extensively exploited in statistical process
control (SPC) applications where quality characteristics
of a process are monitored in order to detect any
unusual event that may occur (Zorriassantine and
Tannock, 1998). The application of neural networks to
SPC can be commonly classified into two categories, i.e.
pattern recognition and unnatural behaviour detection.
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The pattern recognition provides a mechanism for
identifying different types of unnatural patterns in real
time on the series of process quality measurements. The
patterns identified then serve as the primary information
for identifying the causes of unnatural process beha-
viour. Reports of using neural networks for pattern
recognition can be found in Hwarng and Hubele
(1993a,b), Hwarng and Chong (1995), Cheng (1995,
1997), Chang and Aw (1996), Cook and Chiu (1998),
Guh and Hsieh (1999), Guh and Tannock (1999), Chang
and Ho (1999), Perry et al. (2001), Cook et al. (2001).

In the other category, detecting unnatural process
behaviours, one of the earliest applications can be found
in Al-Ghanim (1997) which proposed a system that is
capable of signalling any change in the structure of a
manufacturing process. In particular, the binary im-
plementation of adaptive resonance theory (ART) was
trained on a set of natural data in order to cluster them
into groups with similar features. After training, the
neural network can provide an indication that a change
in process outputs has occurred when the series of
process data does not fit to any of the learned categories.
Although the work of Al-Ghanim represented a
remarkable new use of neural networks for quality
control, the author found that his pioneering methodol-
ogy did not have the same degree of sensitivity as is
possible using other neural network approaches. This
drawback can be mainly ascribed to the binary coding of
the ART algorithm as it is a less flexible way of using
process data than a method based on graded continuous
number encoding.

Our recent researches in manufacturing process
quality control extend Al-Ghanim’s methodology and
present outperforming ART-based approaches for un-
natural behaviour detection (Pacella et al., 2004a,b). In
particular, simplified ART algorithms (based on the
Fuzzy ART), which do not require binary coding of
input data, have been investigated. In Pacella et al.
(2004a) the neural network was trained using a series of
process natural output data in a similar manner to that
of Al-Ghanim. In Pacella et al. (2004b) it was
demonstrated that the training set can even be limited
to a single vector whose components are equal to the
process nominal value. In the post-training phase, Fuzzy
ART compares input vectors to learned categories and
produces a signal if the current input does not fit to any
of the natural templates.

These approaches can achieve similar performances in
signalling a sustained change of process mean with those
of the cumulative sum (CUSUM) control chart (Mon-
tgomery, 2000), but at the same time, they are also
capable to detect a wide set of potential unnatural
changes that cannot be addressed by a sole CUSUM
chart. Indeed, for transient or dynamic changes of
process mean, Fuzzy ART can outperform traditional
charting techniques, which are designed to detect these

particular changes, as a Shewhart control chart with a
set of run rules and sensitizing rules (Montgomery,
2000). Since it can model different control strategies
simultaneously, the proposed approach can be exploited
as the sole tool for signalling a generic modification in
the state of the process, so it provides a powerful
diagnostic tool for detecting assignable causes in actual
industrial processes.

Fuzzy ART was mainly chosen because its responses
to input stimulus can be easily explained, in contrast to
other neural networks, where typically it is more difficult
to realise why an input produces a specific output.
Indeed, one of the major features of using the
aforementioned neural networks is that they are ““black
box” models as the effects of their parameters are
generally not interpretable. On one hand, this is not a
problem for many applications in which the emphasis is
on prediction rather than on model building or model
understanding. On the other hand, the method of
choosing the values of neural network parameters is
not well implemented as it is based on an experimental
process where different values are used and evaluated.
The problem with this is that it can be very time
consuming, especially because neural networks typically
have slow convergence rates. In the SPC field, this leaves
the user with empirically developing, for the process
control case at hand, the relationship between neural
network performances and its parameters.

The aim of this paper is to provide a detailed
description of the proposed Fuzzy ART approach, as
a tool for detecting unnatural process behaviours, to
quality practitioners with a statistical background. We
achieve this by deriving a statistical model of Fuzzy
ART algorithm in a very specific case in order to
understand the capabilities and potentials of neural
networks for manufacturing quality control. Fuzzy
ART is firstly described by means of geometrical
concepts, and then a probabilistic model is applied to
it in order to estimate the effect of three tuneable
parameters on the performance of the control proce-
dure. Statistical methods are then used in order to derive
analytically bound limits for monitoring performances.
A practical result, which is obtained from such a
statistical model, is a criterion for deciding on the
values of network parameters which should be used in
order to obtain a predefined monitoring performance
for the process control case at hand.

An overview of this paper is as follows. In this section,
a brief outline of the paper, have been provided. In
Section 2, the characteristics of Fuzzy ART neural
network are summarised through geometrical argu-
ments, while the reference manufacturing process model
is illustrated in Section 3. The proposed neural system
and the training procedure are both presented in Section
4. In Section 5, the neural network is analysed by means
of statistical arguments. In Section 6, upper bound limits
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for the errors of Types I and II are obtained analytically
as a function of the configuration parameters. An
analytical criterion for neural network designing is
proposed in Section 7, and validated for a specific test
case through simulation. The paper concludes with a
summary and two appendixes which illustrate analytical
proofs and simulation comparisons.

2. Fuzzy ART

Fuzzy ART is based on the adaptive resonance
theory, thus it operates by summarising similar data
into categories, and is based on fuzzy set theory
operations, and hence input values, as well as the
weights of network links, can range only between zero
and one.

This network is composed of two major subsystems,
the attentional and orienting subsystem. Three fields of
nodes, namely FO (the input layer), F1 (called the
comparison layer) and F2 (the competitive layer of the
network, also called the recognition layer), compose the
attentional subsystem. The bottom-up and top—down
weights, which fully connect F1 and F2 layer nodes, can
be updated adaptively in response to input patterns.
Properties of learning for Fuzzy ART can be found in
Huang et al. (1995); Georgiopoulos et al. (1996, 1999),
Anagnostopoulos and Georgiopouolos (2002).

2.1. Training of the neural network for quality control

When applied in quality control applications, Fuzzy
ART may be trained under two different scenarios
(Pacella et al., 2004a,b). In the first of these scenarios, a
collection of input patterns, the so-called training list, is
available. Such patterns are formed using a series of
process output data. The time length of the process
output series, which is used to train the network, is
referred to as the learning period (Al-Ghanim, 1997).
The underlying assumption is that in such a period, the
process under inspection produces only natural outputs,

Table 1
Some nomenclature of Fuzzy ART algorithm

which are clustered into categories by the ART network.
Obviously, patterns that are similar to each other will be
clustered in the same category. The clustering process
performed in the training phase depends on the vigilance
parameter. Higher vigilance imposes a stricter matching
criterion that separates input patterns into finer
categories. On the contrary, lower vigilance tolerates
greater mismatches, and it produces coarse categories.

In the second scenario of training, a list of natural
patterns is not available (e.g. in the case of new installed
process). In this case, only the process target is known in
advance, and the process is monitored to verify a
constant nominal mean equal to the target. In such a
scenario one vector, whose components are equal to the
nominal value, forms the training list and since no
clustering is performed by the network, the vigilance
parameter has no influence during training. Conse-
quently, learning produces only a category that is
identical to the single training vector.

2.2. The Fuzzy ART algorithm

Before discussing the Fuzzy ART algorithm in more
detail, some notation must be introduced. Let U = [0, 1]
be the interval of real numbers included between zero
and one, and let UM be the unit M-dimensional hyper-
cube, this comprises M-dimensional vectors whose
components fall in U. The unit hyper-cube UM serves
as an input space for a Fuzzy ART that comprises M
nodes in the input layer F0. In the sequel of paper the
operators of Table 1 will be employed.

Merging the expressions of min and max fuzzy
operators allows for deriving an alternative definition
of the city-block distance (also known as Manhattan
distance) as follows:

M

dis(x,y) = Z Ix; — yil-

i=1

Let 7 denote a discrete time index at which the state of
the process is evaluated by means of the neural-based

Norm operator [-]: UM = [0, M]

Fuzzy min operator N

Fuzzy max operator RV

City-block distance

UM x UM - UM

UM x UM - UM

dis(-,-) : UM x UM — [0, M]

xe UAM
M

[x|=3"|xil
i=1
x,yeUM
x Ay = [min(x;, y,),...min(x;, p;),...]

x,yeUM
xVy = [max(xi, yy),...max(x;, y;),...]

X,y € uM
dis(x,y) =|xVy|—[xAp]
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control system. From now on, a M-dimensional vector
serving at time of index ¢ as input to the neural network
will be denoted as I, € UM, while the notation I =
(U,1-1,) € UM (where 1 denotes the M-dimensional
all-ones vector) will be used to designate its complement-
coded form. The integer M is called the window size: it
results that |I7| = M. Complement coding occurs in the
field 0, and the resulting 2M-dimensional vector 7 is
the input pattern to the layer F1.

The layer F2 consists of two kinds of nodes:
committed and uncommitted. Each committed node is
associated to a specific category. The information
describing each Fuzzy ART category j is stored in a
template. The template of category j, which is indicated
by the notation w; e UM, is the 2M-dimensional
top—down vector of weights related to the connections
from the jth node in F2, to all nodes in F1 layer. On the
other hand, uncommitted nodes, which feature a
template of all-ones components, do not correspond to
real categories and they represent the “blank” memory
of the system.

An important quantity related to the Fuzzy ART
algorithm is the category match function. With respect to
a specific input pattern I; at the layer F1, the category
match function-value of the jth committed node in the
F2 layer is given by

o 7 A Wil |
p(_[smj = T ( )

The category match function-value of the jth node,
with respect to an input pattern Z, is the quantity used in
comparison to the wvigilance parameter p € [0,1]. The
comparison of the category match function to the
vigilance parameter p constitutes the vigilance test. The
vigilance test is performed by the orienting subsystem,
and it can be considered as a tuneable, novelty detection
method that points out a typical pattern with respect to
existing categories. More specifically, a committed node
of index j failing the vigilance test with respect to a
pattern I, can be interpreted as follows: I, does not fit
the characteristics of category j and therefore, the node
is being reset via the reset node. The vigilance test can be
expressed as follows:

p7, w))=p. 2)

2.3. Training phase

In this work, the focus is on a Fuzzy ART trained by
means of the process nominal value u. Let I, be the
single training AM-dimensional vector, whose compo-
nents code the nominal value, and let l; be the 2M-
dimensional training vector that results from comple-
ment coding in the FO layer. Firstly, all the top—down
weights of the neural network are initialised to one, and
all nodes of the F2 layer are uncommitted. One of the

uncommitted nodes of the F2 layer is then selected to
represent the training pattern I, and the corresponding
2M-dimensional top-down weight vector wy, is set equal
to w;, = l;. The result of this training procedure is that a
single committed node is produced in the F2 layer;
therefore, the template vector mft can be rewritten as
w, = w,1—-w,) where w, =1,.

2.4. Post-training phase

Let us assume that at time of index ¢ an M-
dimensional input pattern I, is presented at the FO
field. The appearance of the 2M/-dimensional pattern I5
across the F1 field produces the activation of the single
node that has been committed in the F2 layer of the
network (whose top—down weight vector is indicated
by w;). The appropriateness of the natural category to
represent the input pattern is checked in the Fuzzy ART
algorithm by the vigilance test of Eq. (2). In this case

|!(; A E;' = |(ltal _!r) A (Eﬂal_mﬂ)l

= |lt/\ﬂﬂ| +M - |LVEN|

=M — dis(ll,mﬂ .
Therefore, the category match function can be expressed
via a geometry-based quantity as follows:
M —distI, A w,)

M b

where dis(L,,w,) is the aforementioned city-block
distance between the M-dimensional input vector I,
and the nominal value template w, of the hyper-cube
UM. The match region V,.(p), with respect to the

template w,, and for a particular value of p, is defined
as the following subset of UM:

oL w5 = G)

Vu(p) = {x € UM p(x°, ws) = p}
— (x e UM : dis(xw )< M(1 - p)).

The quantity M(1 — p) can be considered as the size
of the match region V,(p). It stands for the maximum
distance that a pattern x can have from the nominal
value template w,, so that it can be considered as a
natural one. A geometrical interpretation of the Fuzzy
ART algorithm can be formulated as follows: the input
pattern I, € UM is considered as a natural one if and

only if it belongs to the match region V,(p)
1, € Vulp). “4)

As it can be noticed, the match region size is a
monotonically decreasing function of p: the larger the
vigilance parameter is, the smaller the size of the match
region. The nominal template can be geometrically
represented as a point of the Fuzzy ART input
space UM.
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3. The manufacturing process model

The goal of SPC is to monitor the quality character-
istic of a process in order to detect any unusual event
that may occur. Two sources of variability are
considered by SPC, unassignable cause variability,
variability that is natural to the process and that can
only be modified by changing the existing production
system, and assignable cause variability, observed
unnatural variability that can be traced to a particular
problem. SPC is based on the use of statistical
techniques, and graphical displays such as control
charts, in order to detect assignable cause of variability
(Montgomery, 2000).

Process monitoring denotes the use of a control
system that can cyclically check the desired stable state
of the process. The use of a control system can lead to
the elimination of assignable causes pointed to by
unnatural behaviour. Its properties can be described in
terms of probabilities; in fact, process monitoring
parallels statistical hypothesis testing (H: the process
is in a natural state; H;: the process is in an unnatural
state). As with every statistical test, errors of Types I and
IT can occur with probabilities o = P{H|Hy} and ff =
P{Hy|H}, respectively.

Assume to sample the product from a process and to
measure a single quality characteristic of interest.
Denote by {Y,} the time series of the quality character-
istic measurements obeying the following model:

Z,~NID(0, 1),
Hy:Y,= u+ Z,
Hy: Yy =pu+Zy+ Sy

where

e n=1,2,... denotes a discrete time index, or part
number, in which the process quality characteristic is
measured;

e {Z,} is a time series of random deviations with
zero mean, standard deviation equal to 1, normally
and identically distributed: Z,~NID(0,1). They
model the natural variation of process output data
due to unassignable causes and the variance is
assumed fixed to one as it does not cause loss of
generality.

e {S,} is an arbitrary disturbance time series that
models the unnatural variation due to assignable
causes.

In this work, the special signal is formulated as a
random mixture of positive and negative deviations
from the process nominal value. Essentially, S, = +¢
where ¢ >0 is the magnitude of the mixture measured in
terms of unit of standard deviation. The model of
Eq. (5) has been exploited, where m, denotes the status

of a binary {—1, 1} Markov’s chain at time of index n.
my € {—1,1}. (5

In this model, the status of the binary Markov’s chain
only changes with probability p, = P{m,1 #my|my,};
thus 1 — p. = P{m,1 = my,|m,}. Special cases of this
model are: (1) the constant shift of the mean (when p, =
0) and (2) the systematic variation of the mean (when
P = 1)

Sn:q)'mn;

4. The proposed control system

Let n be the aforementioned time index in which the
process quality characteristic is measured, and denote by
t the time index in which a signal (either the process is in
a natural state or in an unnatural state) is emitted by the
neural network. ¢ is equal to t = [M + (n — 1)P] where
M e {1,2,...} is the dimension of the neural network
input vector (i.e. the aforementioned window size) and
the parameter P € {1,2,..., M} is the number of non-
overlapping measures between two consecutive neural
network input vectors. On one hand, P = 1 implies that
the neural network emits a signal whenever a new single
measure for the process quality characteristic is col-
lected. On the other hand, P = M implies that M new
measures must be collected before the neural network
can emit next signal. In any case, the need to arrange the
series of quality measurements as M-dimensional
vectors implies that the system provides no indication
on the process state during the first M — 1 time
intervals. Fig. 1 shows the proposed neural system for
quality control and the manufacturing process model.

As depicted in Fig. 1, some pre-processing stages of
input data take place before they are presented to the

Fig. 1. The proposed neural system for quality control.
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Fuzzy ART neural network. The first stage is called the
Window Forming and it depends on the window size.
Through this stage, the most recent M observations are
collected to form the network AM-dimensional input
vector. Denoting as Y, the output of this stage, at each
time of index ¢, we get

Y, =[Yimst, Yiepso, oo, Y1, Yol (6)

The second pre-processing stage takes as input an M-
dimensional input pattern Y, and transforms it into the
output vector I, € UM. This pre-processing stage is
called Coding and it consists of a re-scaling of the input
variable into the range [0,1]. The Coding schema
depends on the tuneable parameter />0, which is an
appropriate saturation level for the absolute deviations
of process output values {Y,} from the process nominal
value. Assuming a symmetric distribution of deviation,
the procedure of Eq. (7) is adopted for Coding, at ecach
time of index z.

'sllflalt]
Y‘fgu_li

lt = [It7M+1,Ith+2a .-
I.,=0,

L= (1+55) p—i<Y.<p+l,
f— M+ 1<t<1,

I, =1, u+I<Y,.

At each time of index ¢, the binary output b, is
produced by the neural network. Consider that such
signal is set to b, =1 when the process is supposed
staying in a natural state, b, = 0 otherwise. Basing on
the neural network description provided in Section 2, we
can formulate

Vih =1 < I e Vyp) < dis,mw,)<M(1 - p).
®)

Thus, by using Eq. (7) the criterion of Eq. (8) can be
rewritten as follows:

M
Vb =1 < > min(/,| Y,y — p)<2AM(1 - p).

r=1
©)

Let MAD;, be the Mean Absolute Deviation at time of
index ¢, i.e. the mean of absolute deviations from u of
the most recent M consecutive process output values.
The absolute deviations are constrained to be not
greater than the limit /. In formula

_ 2 min(, 1Yo — )
- .

Therefore, the criterion expressed by former Eq. (9) can
be reformulated as follows:

MAD,

Vb, =1 < MAD,<2I(1 — p). (10)

In other words, at each time of index ¢ the neural
Fuzzy ART network emits an alarm (b, = 0) if and
only if the random variable MAD, exceeds the limit

20(1 — p).

5. A statistical analysis

In this section, a statistical analysis of the random
variable MAD; is provided based on the probabilistic
model described in Section 3. Suppose that the mono-
dimensional quality characteristic is measured with
reference to a nominal mean value u, which is assumed
in the sequel, without loss of generality, equal to u = 0.
In addition, assume P = M, i.e. there are non-over-
lapping measures between two consecutive input vectors
(in this case the neural network can emit a signal
whenever M new measures are collected and ¢ =
M,2M,3M,...).

The goal of our statistical analysis is to calculate
the expected mean and variance values of the
random variable MAD,. To such a goal, seven
specific functions of parameters / and S;, which in the
sequel are referenced to as the psi-functions, are
introduced. Next, we will proceed with the formulation
of the expected mean and variance values of the random
variable MAD, by means of the psi-functions. Proofs
of the properties presented in the sequel are supplied
in Appendix.

The proposed methodology is focused on small
changes of process mean and thus we assume S;</.
The psi-functions are reported in Table 2, where &(-) is
the cumulative standard normal distribution function.

For [ large enough (I — oco) and/or for a in-control
process (S; = 0), the psi-functions can be rewritten as
reported in Table 3.

Property 1. Assuming that Y,=Z,+S,, where
Z,~NID(0, 1), since t = M,2M,3M, ..., it follows that
MAD(M,]) is a time series of independent and identical
distributed (i.i.d.) random wvariables with mean and

Table 2
The psi-functions

0.8 = ) [ exp(- ) - exp(-5) - e~ 155)

lP2(la S’E) = 51[(15([ - Sr) + (15(—] - Sr) - 2¢(_Sr)]
Y31, S:) = [Oo(—]—-S;)+ 1 —&( - S,)]

oS0 = — (1 — 50 exp(=52) - (=1 - 50 exp (- =550
Ps(1,8:) = (1+ 82) [@( — S:) — &(—1 — S,)]

P90~ 5. (- 54 vop (-7

Yo, S0) = P[d(—1 — S;) + 1 — (I — S)]
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Table 3
Special cases of the psi-functions

[ — o0 S, =0 | — 00;S;, =0

HUSI= () Hieol 8]y

Y>(1,S:) = Sl -20(=S;)] 0 0
vi(l,S)= 0 20d(—1) 0
Yy(l,S:)= 0 7\#,@@(7;) 0
Ps(,S)= 1+852 1= 20(-1) 1
Ps(,S)= 0 0 0
Y:(1,S)= 0 28 P(—1) 0
variance as follows:
1 M
EIMAD) =37 ) ElminG, 1Y) (1
1 M
VarMAD ] = -5 > Var[min(/, | Y a4 1)) (12)
r=1

where

E[min(/, | Y<))] = ¥1(/, S2) + Y2/, S2) + ¥3(1, So),  (13)

Var[min(/, | Y<|)]
= —E[min(, | Y- ])] + Pa(l, )
+ s, S:) + Pe(l, So) + ¥7(1, S7) (14)
In particular, for [ large enough (e.g. [>5), the mean

E[min(/,|Y.|)] and the variance Var[min(l,|Y.|)] are,
respectively, equal to

2 2
EY A= 2o (-5 ) + 50 - 20050

2 2
Var[| Y.[] = — {\/%exp(—%) Sl = 2d>(—sf>]}

+1+ 52

Property 2. If the process is in a natural state: Y, = Z,,
where Z,~NID(0, 1), then MAD, is a series of ii.d.
random variables with the expected mean value of Eq.
(15), which is constant over time, and which does not
depend on the window size

Valt-en(-5
E[MAD,] = ;[l—exp(—z)] + 20(—1). (15)

In addition, the variance value of MAD(M, ) is constant
over time and is equal to

Var[MAD;]

L[ 2 P T
:—M{\/;{l—exp(—z)}+21¢(—1)} -7
W (-3) 2
x [\[Zlexp( =% ) + 1 — 20(—1) 4 22 d(—1)

I 2

For parameter | large enough (practically 1=5), the
exponential terms of Egs. (15) and (16) may be neglected
and we get

EMAD/] = \/%

mT—2
Mn

. (16)

Var[MAD,] =

Property 3. If the process is in an unnatural state, and a
mixture disturbance is adopted to model such state (i.e.
Y,=Z,+ ¢, where Z,~NID(0,1)), then the iid.
random variables of the time series MAD, have a
constant mean value that does not depend on the window
size

EMMAD,] = ¥i(l,9) + V2, ) + ¥3(L, 0). (17)

The variance value is constant over time as well, and it
results inversely proportional to the window size value M.

Var[MAD,] = % {(—E’[MAD,] + ¥4(1, @) + ¥5(1, @)

For [ large enough, Eq. (17) can be rewritten as follows:

2 qoz
E[MAD,] = Eexp <— 7) + @[l — 20(—)]

and Eq. (18) can be rewritten as follows:

Var[MAD,] = — % { \/%exp (— %2>

2
1 2
T o[l - 2€D(—q))]} 4t

M

Fig. 2 presents the expected mean values of random
variable MAD, as a function of the mixture magnitude
@, as well as the standard deviation values for four
window sizes M = 1;2;10;50, assuming the coding
parameter equal to / = 3.

Similar graphs are reported by Fig. 3 in the case in
which it results / = 6.
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Fig. 2. Expected mean value (a) of the mean absolute deviation
(MAD) (ordinate) versus absolute magnitude of a mixture special
disturbance ¢ (abscissa). Standard deviation (b) of MAD (ordinate)
versus ¢ (abscissa) for four value of the window size M = 1; 2; 10; and
50. The parameter / has been fixed equal to / = 3.

6. Performance prediction theory for the neural network

The neural network performance for quality monitor-
ing can be fully described in terms of Type I errors (the
rate of alarms occurring in process data having only
natural sources of variation) and of Type II errors (the
rate of non-alarms occurring in process data having
unnatural sources of variation). By Eq. (10), the
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Fig. 3. Expected mean value (a) of the mean absolute deviation
(MAD) (ordinate) versus absolute magnitude of a mixture special
disturbance ¢ (abscissa). Standard deviation (b) of MAD (ordinate)
versus ¢ (abscissa) for four value of the window size M = 1; 2; 10; and
50. The parameter / has been fixed equal to / = 6.

probabilities of Types I and II errors, o = P{H|Ho}
and f = P{Hy|H,}, can be formulated as o=
P{MAD,>2I(1 — p)|Hy} and f = P{MAD,<2/(1—
p)|H}, respectively.

Computer simulation shows that the probability
density distribution of the random variable MAD; is
unimodal. Thus, to find out how the parameters M, /
and p influence the neural network performance, upper
bound limits for the errors of Type I «, and of Type II
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can be obtained through the Vysochanskii—Petunin
inequality. This is based on the Gauss inequality and a
proof of it is provided by Pukelsheim (1994).

Denoting by uy = E[MAD,|Hy, M,l] and ¢} =
Var[MAD,|Hy, M, ] the mean and variance of MAD,,
respectively, under the hypothesis Hy and given the
values M and [, consider the Vysochanskii—Petunin

inequality, V&> +/8/30¢ we get

PMAD;, < + {|Ho} = P{IMAD, — o <<|Ho}

2
>1-2%
9 &2
assuming ¢=2l(1—-p)—p, and p<l—(yy+
\/8/3a¢/21), we have
1 — o = P{MAD, <2/(1 — p)|Hy)

46%
=>1-— 5
9211 — p) — g

hence, an upper bound limit for the Type I error is given
by the following inequality:

403
o< 5
92U(1 — p) — o]
In a similar way, assuming p, = E[MAD,|H, M, ]
and af = Var[MAD,|H, M,I] the mean and variance of
MAD,, respectively, under the hypothesis H; and given

the values M and /, consider the Vysochanskii-Petunin
inequality, V¢> +/8/30, we have

P{MAD,>p; — {|H1} = P{IMAD, — | <¢|H\}

2
>1-2%

(19)

assuming ¢=pu —2/(1—-p) and
\/8/3a1/21), we get
1 — = PMAD;>2/(1 — p)|H }
|- 403
9wy — 21(1 — p)P’

hence, an upper bound limit for the Type II error is
given by the following inequality:

p>1—(u —

40%
[ — 201 — )T

The effects of the parameters p, M and [/ on the
monitoring system performance, are graphically re-
ported in Figs. 4 and 5. In particular, the upper limits
of Egs. (19) and (20) are depicted as a function of the
vigilance parameter p (which ranges between 0.5 and 1),
at four values of the window size (M = 1;2;10; 50), and
two levels of the limit / (/ = 3;6).
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Fig. 4. Upper bound limits for errors of Types I and II given by the
Vysochanskii-Petunin inequality. Limit /= 3; Window Size M =
1,2,10,50. (a) Upper bound limits for error of Type I (ordinate) vs.
vigilance parameter (abscissa). (b) Upper bound limits for error of
Type II (ordinate) vs. vigilance parameter (abscissa). Disturbance
magnitude ¢ = 2.5.
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6.1. Discussion

As it can be observed from Figs. 4 and 5, considering
fixed the values of the window size M and coding limit /,
when the vigilance p decreases, then the upper bound
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Fig. 5. Upper bound limits for errors of Types I and II given by the
Vysochanskii-Petunin inequality. Limit /= 6; Window Size M =
1,2,10,50. (a) Upper bound limits for error of Type I (ordinate) vs.
vigilance parameter (abscissa). (b) Upper bound limits for error of
Type II (ordinate) vs. vigilance parameter (abscissa). Disturbance
magnitude ¢ = 2.5.
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limit of the Type I error decrease too. On the other
hand, the upper bound limit for errors of Type II is a
monotonically decreasing function of the vigilance
parameter: the larger the value of p, the smaller the
limit for errors of Type II. Besides, it results that as the

vigilance parameter approaches the upper limit p = 1,
then the upper bound limit for the errors of Type II
approaches zero. A reasonable strategy is to adjust the
value of p based on the Type I error rate that is
considered acceptable in the actual quality monitoring
application (higher vigilance imposes higher errors of
Type 1, lower vigilance impose lower errors of Type I).

As it can be also noticed from Figs. 4 and 5, the
increase (decrease) rate presented by the upper bound
limit of Type I (Type II) errors as function of the
vigilance parameter, grows as the window size M
increases. That is why a greater window size implies a
smaller variance of the monitored variable MAD, as it
results also from Eq. (18). With a fixed value of the
vigilance parameter and of the coding limit / it can be
noticed that as the window size M increases then the
errors of both Types I and II decrease. Thus, the use of a
larger window size can improve the performance of
neural system. In particular, larger window sizes are
recommended in order to reduce errors of Type II and
the choice of M should be based on the minimum
change in the mean that is important to detect, in the
sense that lower disturbances in the process requires
higher window sizes, in order to be detected efficiently.

Finally, it should be pointed out that previous
analytical results were obtained under the strict hypoth-
esis that there are non-overlapping measures between
two consecutive input vectors (P=M=t=M,
2M,3M,...). In this case, MAD,(M,I) is a time series
of i.1.d. random variables. In the reverse case, when a
single-step moving window is used (P=1=t=M,
M+ 1,M+2,...), once the first M data are collected a
new M-dimensional input vector for the neural network
can be implemented whenever a new quality measure-
ment becomes available. As a consequence, MAD,(M, /)
is not more i.i.d., instead it is positively autocorrelated
over time. Nevertheless, the upper bound limits of Egs.
(19) and (20) are still appropriate as the actual variance
of MAD,(M,[) is always less than that analytically
estimated.

7. Operating phases of the neural network

Basing on the previous results, a strategy can be
derived in order to apply the proposed neural-based
approach in quality monitoring applications. It is
summarised in three main steps:

e Configuration phase (choice of the parameters M and I):
In this phase, the parameters of the Window Forming
(M) and Coding (I) pre-processing stages are both
chosen. As previously observed, while the coding limit
! has no relevant effects, the window size M can
greatly influence the neural network performance.
According to Egs. (19) and (20), the larger window
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size is, the lower the Types I and II error rates are. A
strategy is to select the window size M according to
the minimum magnitude that is important to recog-
nise (lower magnitude requires higher window sizes).

e Training phase: The ART neural network is trained on
the process nominal value g, i.e. the training list is
composed by the single vector ¥, with M components
equal to zero. Such training method represents the
least supervised approach practically possible by using
a single training vector.

o Tuning phase (choice of the parameter p): In the tuning
phase, no more weight adaptations or cluster creations
are allowed, and vectors from a tuning list are
presented to the neural network in order to check
the performance of different settings of the vigilance
parameter p. The tuning vectors are examples of
natural data patterns, which are obtained using either
a series of real process data (measurements of the
quality parameter of interest when only unassignable
causes of variation are in effect), or a series of
simulated data. A strategy is to choice p in order to
maintain the false alarm rate (Type I error) about
equal to a predefined value. By Egs. (8) and (19) it
results that higher vigilance imposes a stricter match-
ing criterion to the natural template learned in
training phase (this results in higher false alarm rates);
on the contrary, lower vigilance tolerates greater
mismatches (this results in lower false alarm rates).

7.1. An analytical criterion for the tuning phase

As it can be noticed, the process of determining the
appropriate value of the vigilance parameter is an
experimental process where trial values are exploited.
The problem with this is that it can be time consuming,
especially when considering several neural network
configurations, i.e. for different combinations of the
parameters M and /.

This section provides an analytical method for
deciding on the vigilance parameter value that should
be used in order to obtain a predefined Type I error rate
(tuning phase). Let & be the reference Type I error rate.
The rate of Type 1 errors is equal to o=
P{MAD,>2I(1 — p)|Hy}, and it can be considered as a
function of the three configuration parameters:
o(M,l,p). From Eq. (19) it results that, for each
combination of the parameters M, / and p, the neural
network rate of Type 1 errors is a(M,l, p)<sup,
where  sup, = 4a3 /92I(1 — p) — pp]*  being  py =
E[MAD;|Hy, M,l] and o = VarlMAD,|H,, M,[] the
mean and variance of MAD,, respectively, under the
hypothesis Hy and given the values M and /.

Let (M, !/, p) be an initial setting combination of the
system parameters for which the neural network
provides the expected Type I error rate: & = a(M, [, p).

By Egs. (15) and (16), assuming M and / large enough
(practically M =50 and />6), it is straightforward to
realise that when a small change (a perturbation) of the
initial configuration (M, /) into a new setting configura-
tion (M’,1') is implemented (e.g. where M’ = M + AM
and /'=[1+ Al with AM € {-15,...,15} and Al ¢
[—2,2]), the mean and the variance of MAD, experience
only irrelevant changes. In such cases, denoting
with uy = E[MAD,|Hy, M'",I'l and ¢f = Var[MAD,
|Ho, M’,I'], respectively, the mean and variance of
MAD, for the new setting combination, we can obtain
the same upper bound limit for the Type I error rate
using the following vigilance parameter value:

/—1—i</+ i ) 1)
P = 21/ Ko 3\/@ .
Since the perturbation of the initial configuration does
not cause relevant changes in the probability distribu-
tion functions of MAD,, we can expect that the Type I
error rates in the two different configuration result
similar

a(M', I, p) = (M, Lp) = M, I,p)=a. (22)

Therefore, given an initial solution, Eq. (21) can be
used for identifying the new value of the vigilance
parameter (p’) that must be used in conjunction to a new
system configuration M’ = M + AMand /' =[+ Al in
order to obtain the same Type I error rate of the initial
setting point.

7.2. A numerical example

This section applies the tuning criterion of Eq. (21) in
several simulation examples. Consider the initial setting
configuration of the neural system with window size
M = 50 and coding limit / = 6. In order to obtain a false
alarm rate about equal to & = 0.27% (i.e. the expected
false alarm rate of a traditional Shewhart control chart),
a trial and error approach was implemented in order to
select a proper value of the vigilance parameter. From
simulation results (50 batches of 2000 M-dimensional
non-overlapping input vectors whose components are
independently and normally distributed), it resulted that
by using p = 0.9128, the neural network provides a false
alarm rate equal to a(M,l,p) = 0.263% with ¢-based
confidence interval (coverage 95%) [0.234%,0.292%].
For the configuration M = 50,/ = 6 and p = 0.9128, the
upper bound limit of the Vysochanskii—Petunin inequal-
ity can be computed by Eq. (19) and it results equal to
sup, = 5.25%.

Fourteen new configurations of the neural-based
system are considered by setting the window size and
coding limit to the new values M’ = M + AM and I' =
[ + Al, respectively, where AM = 0;+5;4+15 and Al =
0; £2. The tuning of such neural networks, in order to
maintain the Type I error rate about equal to the
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Tuning phase. Type I error rates (simulation results 50 batches of 2000 M-dimensional vectors)

Neural network design

Simulation results

M / sup, p (M, 1, p) Conf. Inter. 95%
50 6 5.25% 0.9128 0.263% [0.234%,0.292%]
M 4 == +3J2%1(1)T7) a(M', 1, p") Conf. Inter. 95%
35 4 0.8631 0.288% [0.257%,0.319%]
45 4 0.8676 0.261% [0.224%,0.298%]
50 4 0.8693 0.265% [0.236%,0.294%)]
55 4 0.8707 0.278% [0.247%,0.309%]
65 4 0.8731 0.261% [0.232%,0.290%]
35 6 0.9087 0.285% [0.254%,0.316%]
45 6 0.9117 0.259% [0.223%,0.295%]
55 6 0.9138 0.279% [0.247%,0.311%)]
65 6 0.9154 0.262% [0.233%,0.291%]
35 8 0.9315 0.283% [0.252%,0.314%)]
45 8 0.9338 0.262% [0.225%,0.299%]
50 8 0.9346 0.263% [0.234%,0.292%)]
55 8 0.9354 0.287% [0.255%,0.319%]
65 8 0.9366 0.269% [0.239%,0.299%]

reference value o = 0.27%, has been implemented by
Eq. (21). In Table 4, for each of the new neural network
configurations, the resulting values of the vigilance
parameter have been reported.

In order to validate the method, the actual Type I
error rates have been also estimated through simulation
(50 batches of 2000 M-dimensional non-overlapping
input vectors). The 7-based confidence intervals (95%
coverage) of the estimated Type I error rates have been
reported in Table 4.

As it can be noticed, each of the new setting
configurations presents an actual false alarm rate about
equal to 0.27%, hence Eq. (21) allows for selecting the
proper vigilance parameter value in order to maintain
false alarm rate approximately unchanged.

8. Conclusions

With the widespread exploitation of automated
production and inspection in several industrial applica-
tions, the tasks of SPC, traditionally performed by
quality practitioners, have to be automated. As an
example, applications based on continuous product
manufacturing operations, including the manufacture
of paper and wood products, chemicals, and cold-rolled
steel products require computer-based algorithms
that implement various quality control tasks automati-
cally.

This paper is focused on an ART-based neural
network for automating quality control of manufactur-
ing processes and is mainly intended to provide a basic

description of such a network to quality practitioners
with a statistical background. We achieve this by
deriving a statistical model of Fuzzy ART algorithm
in a very specific case in order to understand the
capabilities and potentials of neural networks for
manufacturing quality control.

The analysed neural approach is mainly intended for
identifying unnatural process behaviour by detecting
changes in the state of the process. This method is
quite simple to implement, and the training set can be
limited to a single ideal pattern. Some important details
of the proposed neural-based control schema are
discussed through geometrical concepts, while the
effects of three tuneable parameters on the performance
are analytically examined by means of a probabilistic
model. The performances of the control system reported
in the paper are obtained analytically and the problem
of predicting neural network performance, as upper
bound limits for the errors of Types I and II, is
considered.

Taking advantage of the statistical analysis described
in the present work, a promising future direction of
research can be related to the design of a Fuzzy ART
control procedure in which the values of the tuneable
parameters is achieved by optimising (i.e. minimising) a
specific cost function.
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Appendix A. Proofs

In this appendix, three properties reported in Section
5 are verified.

Proof of Property 1. Consider the quality characteristic
of each process output measured at time 7 given by
vi.Y,.=Z.+S;; Z.~NID(,1).

Referring for simplicity to the case |S;| </ and since Y,
is normally distributed, the expected mean value of

min(/, | Y,|) is given by
(X - Sr)2>
——— )dx

+1 1
Emin(/,|Y-])] = /—1 |x] EGXP<— >
FID(—] — S,) + [l — (I — S,)].

The first term on the right-hand of former equation can
be simply calculated as follows:

oo (x—S)°
/_] |x|\/ﬁexp(—72 )dx
:/+'XL6XP<_M)(1X
0o N2n 2

7;} 1 2
—/ zexp(—z)dz
_1-s, 2m 2
=St 1 72
— S; —exp| ——= |dz
/—l—sT 2n P ( 2 )
1 22 +1-S7
v2n P ( 2 ) _S: ]
+ Sr[q)(l - Sr) - q)(_Sr)]
1 2\ |75
V2n P ( 2 ) —I-S,

- Sr[é(_Sr) - (D(_I - Sr)]

= —Lex <— G ST)Z) + ! ex (_S_f)
VT 2 P\
+ ST[QD(I - Sr) - @(—ST)]

L (_S_f)_ - (_(1+ST>2)
S P\T2) T 2
- Sr[(p(_Sr) - ¢(_Z - Sr)]

i 1 S% (l - Sr)z
=7z oo (-3) ~oo (-5

2
e (_(1 +5) )}

+ Sr[d)(l - Sr) + (D(_I - Sr) - 2@(—51)],

ﬁ

where @(-) is the cumulative standard normal distribu-
tion function. Therefore, the expected value
E[min(/,|Y.|)] at time of index 7 is the sum of three
components, which depend on the parameters / (the
tuneable parameter of the Coding pre-processing stage)
and S; (the unnatural offset of the process mean at
time 1)

E[min(/,|Y<))] = ¥1(1, S) + V(1, So) + ¥3(1, So),

where the three “psi-functions” are expressed by the
following equations:

2 oy
P1(,S0) = «/%_n {2 exp (— %) — exp (_ (l%)
2
—exp <_ M%J)} i

'112(13 Sr) = Sr[(p(l - Sr) + (D(_l - Sr) - 2¢(_Sr)]a
W31, S,) = I[(—] — S;) + 1 — &l — S)].

The second-order moment about the origin of the
random variable min(/, | Y,|) at time 7 is given by

! 2
Efmin(l, | Y]] = / szz exp <_ @) ©

—/ T 2
+ P[d(—1 - S)+1—d( - S)].

The first term on the right-hand of former equation can
be computed by parts as follows:

[ 7z won(-052 e
z=x-5% /_]/_Zz \/%_n (z+ S.)? exp <— ?) dz
el e
(e

[-S 2 ZZ
+ —— S.zexp| — = )dz;
/717& V2n p( 2)

the first term in the previous equation is equal to
[—S7 1 5 22
——zexp| ——= |dz
/717.5": LY, 2 P < 2)
[ro-ameelen(-3)
= ———=dz|exp| —=
s, A/2m P\™2
1 i 72 =87 1-S; 72
=———|zexp| —= —/ exp(——)dz
vam | < 2> S-S, J-l-s. 2
1—S.)
1= soen(-5)

2
7 _ 2
V| i soen(-C5)

—2a[d(l — S;) — D(—1 — S,)]
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the second term is equal to

1-S: 1 5 ZZ
— S = )d
[, gz Ser(-3)e
= S @ - S;) — O(—1 - S,)];

the last term is
-8 2
T2 z
—— Szexp| —— |dz
/—]—Sr kY% 2n ‘ p( 2>

1 2\ |5
=28, |——exp| — =
V2n p( 2)

—[-S:

2 2
ZSI %[_exp<_(l_%)+exp(_@>:|

Therefore, the second-order moment about the origin of
the random variable min(/, | Y,|) at time of index 7 is the
sum of four components, which depend on the para-
meters / (the tuneable parameter of the Coding pre-
processing stage) and S; (the unnatural offset of the
process mean at time 1)

E[min(l, | Y.])*] = Pa(, So) + P5(, S:)
+ l116(19 S‘E) + (II7(19 ST))

where the additional four psi-functions are expressed by
following formulae:

| (I- 8.
el sren(-42)

2
—(—=1 = Sy)exp <_ %)}

III4(I’ S‘L’) = -

P51, S:) = (1 + SH[P( — S;) — D(—1 — S,)],

2
Wy(l,S.) = S \ﬁ [— exp (— U‘—S))
T 2
2
+ exp (— %)} ,

Yo(l,8;) = P[®(—] — S;) + 1 — d(1 — S,)].

Finally, the variance of the random variable min(/, | Y|)
at time 7 can be simply computed as follows:

Var[min(/, | Y.])] = —Ez[min(l, Y. ]+ E|[min(/, | YT|)2J.

It should be pointed out that results of Property 1 hold
for any value of S;. O

Proof of Property 2. Property 2 is a corollary of
Property 1. Indeed, Property 2 is immediately proved
by Property 1 by assuming S; =0. [

Proof of Property 3. If the process is in an unnatural
state (i.e. V1:S; = £¢ where ¢ is a constant value
greater than zero and less than /), and considering a
fixed value of limit /, then the psi-functions are
symmetric functions of the variable ¢. In particular it

holds that

2 2
oo () (52
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= ¥, ),

V3(l,—p) = [[P(—1+ @) + 1 — O(I + )]
=l —®(—@)+1—1+d(—]— )]
=[D(~]- @)+ 1—d(—¢)]
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Hence, Property 3 is a corollary of Property 1 when
S:=+x¢. O

Appendix B. Simulation validation

This appendix provides the reader with a short
comparison between the neural network performances
and those of traditional SPC tools. The Type II error
rates presented by the ART network are estimated for
process mean changes of 1.0, 1.5 and 2.0 unit of
standard deviations and then, they are compared to
those of three SPC benchmarks. The evaluation
procedure of the neural network involves the following
steps:

e Configuration phase: The ART neural network of
Section 7.2 has been used for performance evaluation
(M = 50, [ = 6). It consists of 50 neurones in the F0
layer, 100 neurones in the field F1, and a single node
in the F2 layer.

e Training phase: The implemented ART neural net-
work has been trained on the process nominal value
u=0.

o Tuning phase: In order to compare the neural network
to any traditional charting technique it is required that
performances must be identical when the process is in
a natural state (Type I error rates). This serves to
provide an unbiased comparison when the process
drifts to wunnatural states. Hence, the vigilance
parameter p of the ART neural network was in turn
adjusted in order to give a comparable performance in
terms of the Type I error rate (&,,) to that of a
predefined SPC benchmark (&..). In particular, the
neural network has been tuned on 50 streams of 2000
simulated in-control data normally distributed with
zero mean and standard deviation one.

e Performance analysis: Comparisons of the neural
network performances to those of a control chart
benchmark are based on Type II error rates, which
have been experimentally estimated by introducing
two controlled disturbance signals: systematic varia-
tion and shift (Section 3). For each disturbance signal
and each magnitude setting, Type II error point and
interval estimators were assessed on 50 batches of
2000 independent simulation runs. This simulation
methodology has been chosen in order to obtain
independence of the batch means by passing a test for
correlation at lag 1.

The following SPC benchmarks have been selected.

1. Bilateral cumulative summation (CUSUM) control
chart with parameters k = 0.5 and & = 4.7749 (Mon-
tgomery, 2000). Estimated Type I error rate &. =
0.269%.

2. Shewhart control chart with Western Electric run
rules (Western Electric, 1956). Estimated Type I error
rate o = 1.115%.

3. Shewhart control chart with Western Electric run
rules and four additional sensitising rules (Nelson,
1984). Estimated Type I error rate &, = 1.617%.

A one-step moving window of size M has been exploited
for Type II error estimation. For the comparison to be
unbiased, the alarms of a control chart occurred during
the first M — 1 observations were neglected, and the
performances were estimated for time indexes ¢> M.
Numerical results and comparisons are discussed in the
following sections for each of the SPC benchmarks.

B.1. CUSUM control chart

Table 5 compares Types I and II errors of the
CUSUM schema k = 0.5 and & = 4.7749 (Type I error
& = 0.269%) to those of the ART neural network with
vigilance parameter p =0.9128 (Type I error a,, =
0.263%). The values of the CUSUM parameters k and 4
have been set for signalling a shift of one standard
deviation in the mean with a false alarm rate about
equal to that of the standard Shewhart 3-sigma control
chart (0.27%).

In order to confirm the statistical significance of the
difference between neural network and control chart
performances, the #-based confidence intervals (coverage
95%) have been also presented in the same table. The
columns marked as f,, — f, gives the difference
between the Type II error point estimators. The lower
limit of the ¢-based confidence intervals is reported in the
column labelled as (B, — B..)_, while the upper limit in
the column labelled as (f,,, — B..).-

The neural network performance is better (i.e. smaller
Type II errors) than that of the CUSUM chart for
signalling systematic variations of the process mean. On
the other hand, the neural network has a worse
performance if compared to the CUSUM chart (i.e.
higher Type II errors) for shifts of 1.0 unit of standard
deviation. For higher shifts, the performances are
similar.

The results of Table 5 prove that the CUSUM schema
cannot be adopted as the sole tool for signalling a
generic modification in the state of the process (e.g. it
performs poorly in signalling alarms for a systematic
variation of the mean, while it performs better for a
constant shift of the mean). On the other hand, the ART
neural network appears able to recognise different kinds
of change with the same capability. Indeed, the neural
network performances in tackling systematic variations
and shifts of the mean are similar for each level of
magnitude.
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Table 5
Comparison between neural network and CUSUM control chart (simulation results, 50 sets of 2000 data)

CUSUM Fuzzy ART Comparison

k=0.5 M =50 Neural network vs. control chart

h=4.7749 p=0.9128
Natural &a‘ &nn (&nn - &CC)— &nn - &rc (&nn - &c£)+

0.269% 0.263% —0.050% —0.006% 0.038%
SyS. Var. Ba‘ Bnn ([}nn - [}(‘(‘)— [}nn - /}a‘ ([}nn - /}z‘(')Jr
1.0 99.487% 67.645% —32.741% —31.842% —30.943%
1.5 99.158% 0.000% —99.225% —99.158% —99.091%
2.0 98.424% 0.000% —98.508% —98.424% —98.340%
Shift Bec Bun Bun = Beo)- Bun = Bee Bun = Beo)s
1.0 0.019% 67.989% 67.045% 67.970% 68.895%
1.5 0.000% 0.012% 0.000% 0.012% 0.030%
2.0 0.000% 0.000% 0.000% 0.000% 0.000%

Table 6
Comparison between neural network and Shewhart control chart with standard Western Electric (1956) run rules (simulation results, 50 sets of 2000
data)

Shewhart Fuzzy ART Comparison

WE RRs M =50 Neural network vs. control chart

p=0.9168

Natural &n(‘ &nn (&nn - &c(‘)f &nn - &cc (&nn - 65(:0)4r

1.115% 1.133% —0.075% 0.018% 0.111%
SyS. Var. ﬁu’ ﬁnn (ﬁnn - ﬁcc)— /inn - ﬁcc (ﬁmz - /gcc)Jr
1.0 95.635% 42.181% —54.654% —53.454% —52.254%
1.5 87.731% 0.000% —87.901% —87.731% —87.561%
2.0 72.220% 0.000% —72.536% —72.220% —71.904%
Shift ﬁcc Bmz (/}ml - B('(')— Zgnn - /}(‘(' ([;nn - B('(-)Jr
1.0 80.820% 43.423% —38.506% —37.397% —36.288%
1.5 42.902% 0.008% —43.419% —42.894% —42.369%
2.0 8.335% 0.000% —8.609% —8.335% —8.061%

B.2. Shewhart control chart with Western Electric run
rules

Table 6 compares Type II errors of the Shewhart
chart with the three Western Electric run rules (two of
three consecutive points outside the +2-sigma limits;
four of five consecutive points beyond the +1-sigma
limits; a run of eight consecutive points on one side of
the centreline), to those of the neural network.

While the simultaneous tests proposed in the Western
Electric Statistical Quality Control Handbook improve
the performance of the Shewhart control chart in
recognising changes of the process mean, they do so at
the cost of increases in false out-of-control signals.
Therefore, in this case a higher value of the vigilance
parameter (p = 0.9168) has been adopted in order to
obtain a neural network false alarm rate that is

comparable to the increased Type I error of the

benchmark.

The results of Table 6 prove that the proposed neural

network achieves better performances (lower Type II
error rates) than those of the SPC benchmark in
recognising any disturbance signals.

B.3. Shewhart control chart with Western Electric run
rules and sensitising rules

Table 7 compares Type Il errors of the Shewhart
control chart with seven run rules, to those given by the
ART neural network with vigilance parameter p =
0.9179. The run rules implemented in the SPC bench-
mark are the standard three tests described in Western
Electric (1956) and four additional sensitising rules
proposed by Nelson (1984): six points in a row steadily
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Table 7

Comparison between neural network and Shewhart control chart with standard Western Electric (1956) and Nelson (1984) sensitising run rules

(simulation results, 50 sets of 2000 data)

Shewhart Fuzzy ART Comparison
WE + SR RRs M =50 Neural network vs. control chart
p=09179

Natural &('(' &mz (&nn - 5((;(»), &ml - &('(' (&nn - &(‘c)+

1.671% 1.653% —0.135% —0.018% 0.099%
Sys. Var. i;(:(: ngl (Bnn - B('c)— ﬁnn - ch(: ([gnn - B('(')+
1.0 87.888% 34.829% —54.326% —53.059% —51.792%
1.5 65.761% 0.000% —66.193% —65.761% —65.329%
2.0 32.188% 0.000% —32.652% —32.188% —31.724%
Shift ﬁa‘ ﬁnn (igmz - B('c)— Bmx - /}cc (ﬁnn - B('(')Jr
1.0 80.255% 35.669% —45.727% —44.586% —43.445%
1.5 42.546% 0.005% —43.017% —42.541% —42.065%
2.0 8.265% 0.000% —8.521% —8.265% —8.009%

increasing or decreasing; fifteen points in a row within
the +1-sigma limits; fourteen points in a row alternating
up and down; eight points in a row on both sides beyond
the +1-sigma limits. The use of four additional run rules
increases the false alarm rate of the SPC benchmark,
thus, a higher value of the vigilance parameter
(p = 0.9179) has been adopted in this case.

The proposed neural network has better performances
(lower Type II error rates) than those of the SPC chart
when recognising the disturbance signals, for each
magnitude level considered in the test.

B.4. Discussion

From the experimental results and comparisons, it is
fair to conclude that the proposed ART-based control
system is superior to (or in par with) several SPC charts
in terms of Type II error rates. In particular, test
comparisons show that the proposed method is a good
control procedure for tackling different kinds of
alteration in the process mean. For example, the neural
network possesses superior detection capability against
fluctuations of the process mean (systematic variations)
than the CUSUM test, while it presents a comparable
(or slightly worse) ability in signalling constant shifts. At
the same time, the neural network outperforms She-
whart control charts with a set of run rules and
sensitising rules.

Simulation results prove that the proposed approach
can model different control strategies simultaneously:
e.g., those of a CUSUM and of a Shewhart control chart
with run rules, which were designed to recognise
different kinds of change in the process structure (steady
shifts of moderate magnitude and sudden fluctuation of
high magnitude in the process mean, respectively).
Indeed, the neural network can be potentially adopted

to signal any types of unnatural pattern, so it provides a
powerful diagnostic tool for detecting assignable causes
in real processes.

Thus, the main advantage of the proposed approach
over traditional ones is that it can be exploited as the
sole tool for signalling a generic modification in the state
of the process. Indeed, the proposed neural network can
be useful when starting processing of new products, or
with a new installed process, for which no prior
knowledge of the unnatural changes are available in
advance in order to design a proper control strategy.
However, since the ART-based approach can only
signal generic unnatural process behaviours, the pro-
posed system cannot substitute existing neural-based
methodologies for detecting and classifying predictable
unnatural patterns on control charts. It is a comple-
mentary promising tool capable of enhancing the
effectiveness of quality control using neural network
when no prior knowledge of the unnatural patterns is
available for training.
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